USN-3617-3: Linux kernel (Raspberry Pi 2) vulnerabilities
4 April 2018
Several security issues were fixed in the Linux kernel.
Releases
Packages
- linux-raspi2 - Linux kernel for Raspberry Pi 2
Details
It was discovered that a race condition leading to a use-after-free
vulnerability existed in the ALSA PCM subsystem of the Linux kernel. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2017-0861)
It was discovered that a use-after-free vulnerability existed in the
network namespaces implementation in the Linux kernel. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2017-15129)
Andrey Konovalov discovered that the usbtest device driver in the Linux
kernel did not properly validate endpoint metadata. A physically proximate
attacker could use this to cause a denial of service (system crash).
(CVE-2017-16532)
Andrey Konovalov discovered that the SoundGraph iMON USB driver in the
Linux kernel did not properly validate device metadata. A physically
proximate attacker could use this to cause a denial of service (system
crash). (CVE-2017-16537)
Andrey Konovalov discovered that the IMS Passenger Control Unit USB driver
in the Linux kernel did not properly validate device descriptors. A
physically proximate attacker could use this to cause a denial of service
(system crash). (CVE-2017-16645)
Andrey Konovalov discovered that the DiBcom DiB0700 USB DVB driver in the
Linux kernel did not properly handle detach events. A physically proximate
attacker could use this to cause a denial of service (system crash).
(CVE-2017-16646)
Andrey Konovalov discovered that the ASIX Ethernet USB driver in the Linux
kernel did not properly handle suspend and resume events. A physically
proximate attacker could use this to cause a denial of service (system
crash). (CVE-2017-16647)
Andrey Konovalov discovered that the CDC USB Ethernet driver did not
properly validate device descriptors. A physically proximate attacker could
use this to cause a denial of service (system crash). (CVE-2017-16649)
Andrey Konovalov discovered that the QMI WWAN USB driver did not properly
validate device descriptors. A physically proximate attacker could use this
to cause a denial of service (system crash). (CVE-2017-16650)
It was discovered that the HugeTLB component of the Linux kernel did not
properly handle holes in hugetlb ranges. A local attacker could use this to
expose sensitive information (kernel memory). (CVE-2017-16994)
It was discovered that the netfilter component of the Linux did not
properly restrict access to the connection tracking helpers list. A local
attacker could use this to bypass intended access restrictions.
(CVE-2017-17448)
It was discovered that the netfilter passive OS fingerprinting (xt_osf)
module did not properly perform access control checks. A local attacker
could improperly modify the system-wide OS fingerprint list.
(CVE-2017-17450)
Dmitry Vyukov discovered that the KVM implementation in the Linux kernel
contained an out-of-bounds read when handling memory-mapped I/O. A local
attacker could use this to expose sensitive information. (CVE-2017-17741)
It was discovered that the Salsa20 encryption algorithm implementations in
the Linux kernel did not properly handle zero-length inputs. A local
attacker could use this to cause a denial of service (system crash).
(CVE-2017-17805)
It was discovered that the HMAC implementation did not validate the state
of the underlying cryptographic hash algorithm. A local attacker could use
this to cause a denial of service (system crash) or possibly execute
arbitrary code. (CVE-2017-17806)
It was discovered that the keyring implementation in the Linux kernel did
not properly check permissions when a key request was performed on a task's
default keyring. A local attacker could use this to add keys to
unauthorized keyrings. (CVE-2017-17807)
It was discovered that a race condition existed in the OCFS2 file system
implementation in the Linux kernel. A local attacker could use this to
cause a denial of service (kernel deadlock). (CVE-2017-18204)
It was discovered that the Broadcom NetXtremeII ethernet driver in the
Linux kernel did not properly validate Generic Segment Offload (GSO) packet
sizes. An attacker could use this to cause a denial of service (interface
unavailability). (CVE-2018-1000026)
It was discovered that the Reliable Datagram Socket (RDS) implementation in
the Linux kernel contained an out-of-bounds write during RDMA page allocation. An
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2018-5332)
Mohamed Ghannam discovered a null pointer dereference in the RDS (Reliable
Datagram Sockets) protocol implementation of the Linux kernel. A local
attacker could use this to cause a denial of service (system crash).
(CVE-2018-5333)
范龙飞 discovered that a race condition existed in loop block device
implementation in the Linux kernel. A local attacker could use this to
cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2018-5344)
Update instructions
The problem can be corrected by updating your system to the following package versions:
Ubuntu 17.10
After a standard system update you need to reboot your computer to make
all the necessary changes.
ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well.
References
- CVE-2017-0861
- CVE-2017-15129
- CVE-2017-16532
- CVE-2017-16537
- CVE-2017-16645
- CVE-2017-16646
- CVE-2017-16647
- CVE-2017-16649
- CVE-2017-16650
- CVE-2017-16994
- CVE-2017-17448
- CVE-2017-17450
- CVE-2017-17741
- CVE-2017-17805
- CVE-2017-17806
- CVE-2017-17807
- CVE-2017-18204
- CVE-2018-1000026
- CVE-2018-5332
- CVE-2018-5333
- CVE-2018-5344